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Abstract

Following the approach to pseudo-Riemannian symmetric spaces developed in [I. Kath, M. Olbrich, On the structure of pseudo-
Riemannian symmetric spaces, arXiv:math.DG/0408249, 2004] we exhibit examples of indefinite hyper-Kähler symmetric spaces
with non-abelian holonomy. Moreover, we classify indecomposable hyper-Kähler symmetric spaces whose metric has signature
(4, 4n). Such spaces exist if and only if n ∈ {0, 1, 3}.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The theory of special pseudo-Riemannian geometries has been steadily developing for some years now. Hyper-
Kähler geometry is certainly one of the most important of these geometries. Recall that a (pseudo-Riemannian)
hyper-Kähler manifold is a tuple (M, g, I, J ), where (M, g) is a pseudo-Riemannian manifold, and I, J are two
parallel anticommuting almost complex structures on M which preserve the scalar product g. In particular, dim M
and the index of g are divisible by 4. It is natural to look first for symmetric examples of such manifolds, i.e. hyper-
Kähler symmetric spaces, and to try to classify them. It is well-known that there are no non-flat Riemannian hyper-
Kähler symmetric spaces. However, the pseudo-Riemannian situation is quite different. It turns out that there is a
large amount of indefinite hyper-Kähler symmetric spaces including many continuous families. It is a natural task to
describe all these spaces and possibly to classify them. However, this seems to be rather difficult. A first approach
to a classification was given by Alekseevsky and Cortés [2]. They found a nice description of the isometry classes
of hyper-Kähler symmetric spaces by quartic polynomials satisfying certain equations. Moreover, they exhibited a
series of special solutions, which we want to call tame here. All hyper-Kähler symmetric spaces that correspond to
these tame solutions have neutral signature and an abelian holonomy group of very special structure. However, it
remains unclear how to find all solutions of the relevant equations, compare the discussion below. Further detail on
the Alekseevsky–Cortés approach will be given in Section 5, Remark 5.3.

In [9] we developed a systematic approach to the construction and classification of pseudo-Riemannian symmetric
spaces. It is based on the fact that the Lie algebra of the transvection group of a symmetric space can be obtained
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from simpler objects by a canonical extension procedure, called quadratic extension. The above mentioned paper [2]
by Alekseevsky and Cortés motivated us to test our method in the hyper-Kähler case. It is the aim of the present paper
to shed some new light to the theory of hyper-Kähler symmetric spaces from this rather different perspective.

Simply connected hyper-Kähler symmetric spaces can be described by so-called hyper-Kähler symmetric triples.
Such a triple consists of the Lie algebra of the transvection group of the symmetric space, an invariant non-degenerate
inner product on this Lie algebra and a certain Sp(1)-action which is called quaternionic grading, see Section 2 for an
exact definition. In Section 4 we will describe an extension procedure which yields a hyper-Kähler symmetric triple
starting with a Lie algebra with quaternionic grading (l,8l), a pseudo-Euclidean vector space a with quaternionic
grading 8a and a pair (α, γ ) ∈ Hom (

∧2 l, a) ⊕ Hom (
∧3 l,R) of Sp(1)-invariant forms satisfying certain cocycle

conditions. Note that the transvection group of a hyper-Kähler symmetric space is always nilpotent, see Corollary 2.4.
Therefore the same is true for the Lie algebra l.

In Section 5 we will use this general construction to give concrete examples. We construct hyper-Kähler symmetric
triples whose associated symmetric spaces have a metric of signature (4n + 4, 4n + 12), n ≥ 0, and a non-abelian
holonomy group. Using the tangent bundle construction we obtain further examples which also have non-abelian
holonomy. On the other hand, Alekseevsky and Cortés [2] had stated a classification of hyper-Kähler symmetric
spaces, which would imply that any hyper-Kähler symmetric space has abelian holonomy. Indeed, the classification
in [2] relied on the statement that all solutions of the considered equations are tame. However, our examples show
that this statement is false and that there are many more hyper-Kähler symmetric spaces than claimed in [2]. This
has also consequences for the results in [1,6]. For more information see Remark 5.3. After we had discovered the
first counterexample to the classification in [2] (Example 1 in this paper) Cortés reconsidered the situation in [5]. He
admitted the mistake and showed that the Alekseevsky–Cortés approach yields a classification if one considers only
hyper-Kähler symmetric spaces with abelian holonomy. More exactly, he proved that all hyper-Kähler symmetric
spaces with abelian holonomy correspond to tame solutions. For additional information see Remark 5.3.

Furthermore, in Section 6 we show that there is a canonical way to represent each hyper-Kähler symmetric triple
as an extension of the kind described above. Such extensions of (l,8l) by a which are associated with a hyper-Kähler
symmetric space in this canonical way are classified by a cohomology set H2

Q(l,8l, a)]
(introduced in Section 3).

The isomorphism classes of underlying hyper-Kähler symmetric triples are in correspondence with the orbits of the
action of the product of the automorphism groups of (l,8l) and a onH2

Q(l,8l, a)]
. This yields a general classification

scheme for hyper-Kähler symmetric triples. Theorem 6.1 states the corresponding result for indecomposable triples,
i.e. for the objects one really wants to classify. We remark that the comparison of our extension method with the
classification of hyper-Kähler symmetric spaces with abelian holonomy in [5] yields the following. If a hyper-Kähler
symmetric triple is canonically represented as an extension of (l,8l) by a then the holonomy of an associated hyper-
Kähler symmetric space is abelian if and only if l is abelian.

The general classification scheme described above can be used to find explicit classification results (i.e. lists) if one
considers only hyper-Kähler symmetric spaces with a metric of a given small index. In Section 7 we will demonstrate
this for indecomposable spaces of index 4. They are exhausted by the flat space H, a one-parameter family of hyper-
Kähler symmetric spaces of signature (4, 4) having abelian holonomy, and one single space of signature (4, 12) with
non-abelian holonomy (the one constructed in Section 5, Example 1). See Theorem 7.4 for the precise statement.

2. Hyper-Kähler symmetric triples

We will say that (l,8l) is a Lie algebra with quaternionic grading, if l is a Lie algebra and8l : Sp(1) → Aut (l) is
an Sp(1)-action of the following kind. We assume that l = l+ ⊕ l− such that the representation of Sp(1) on l+ is trivial
and the representation of Sp(1) on l− is a multiple of the standard representation. In particular, l− is a left H-module.
If in addition [l−, l−] = l+ we call the grading proper.

Similarly, we will say that (a, 〈· , ·〉a,8a) (or a in abbreviated notation) is a vector space with orthogonal
quaternionic grading, if (a,8a) is an abelian Lie algebra with quaternionic grading and the image of 8a is in
O(a, 〈· , ·〉a).

Proposition 2.1. If (l,8l) is a Lie algebra with proper quaternionic grading, then l is nilpotent.

Proof. We consider the semi-simple Lie algebra s = l/r, where r is the solvable radical of l. The grading 8l induces
a proper quaternionic grading 8s. Being a connected subgroup of the automorphism group of s, the image of 8s
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consists of inner automorphisms which respect the decomposition s = s+ ⊕ s−. Therefore its Lie algebra can be
identified with a subalgebra k ⊂ s+. It follows that the adjoint representation of k on s+, and hence on k, is trivial. On
the other hand, k ∼= sp(1) unless s− = {0}. We conclude that s = {0}, i.e., l is solvable.

We finish the proof by showing that solvable Lie algebras l = l+ ⊕ l−, l+ = [l−, l−], admitting an automorphism
F such that F2

∣∣
l−

= −Id and F |l+
= Id are nilpotent. Indeed, F = 8l(i) is such an automorphism.

We look at the decreasing chain of ideals of l

l := R0(l) ⊃ R1(l) ⊃ R2(l) . . . ,

where Rk+1(l) is the minimal l-ideal in Rk(l) such that the induced action of l on Rk(l)/Rk+1(l) is semi-simple. Note
that these ideals are F-invariant. In fact, they are under all automorphisms of l. There exists a number m such that
Rm(l) = {0}.

We look at the semi-simple representation of l on the complexification Wk of Rk(l)/Rk+1(l). Since l′ is a nilpotent
ideal of l, the Lie algebra l+ = [l−, l−] ⊂ l′ acts trivially on Wk . It follows that Wk is the direct sum of weight spaces
Eλ with λ ∈ (l∗−)C. Note that F acts naturally on (l∗−)C and on Wk with the property F(Eλ) = EF(λ). Assume that
λ 6= 0. Then the elements Fn(λ), n = 0, 1, 2, 3, are pairwise different. Therefore the sum of the weight spaces EFn(λ),
n = 0, 1, 2, 3, is direct. Take v ∈ Eλ. Then Fn(v) ∈ EFn(λ), and

v−
:= v − F(v)+ F2(v)− F3(v)

satisfies F(v−) = −v−. However, the only possible eigenvalues of F on Wk are 1, i and −i . We conclude that v−
= 0,

hence v = 0. It follows that Wk = E0, i.e. l acts trivially on Wk . We conclude that l is nilpotent. �

Definition 2.2. A hyper-Kähler symmetric triple is a triple (g,8g, 〈· , ·〉g), where (g,8g) is a Lie algebra with proper
quaternionic grading and 〈· , ·〉g is an l− and8l-invariant non-degenerate symmetric bilinear symmetric bilinear form.

There is an obvious notion of isomorphism between hyper-Kähler symmetric triples. Note that θg := 8g(−1) is an
isometric involution of g and (g, θg, 〈· , ·〉g) is a symmetric triple in the sense of [9].

Proposition 2.3. The Lie algebra of the transvection group of a hyper-Kähler symmetric space carries the structure of
a hyper-Kähler symmetric triple in a canonical way. There is a one-to-one correspondence between isometry classes
of simply connected hyper-Kähler symmetric spaces and isomorphism classes of hyper-Kähler symmetric triples.

Proof. The proposition is a slight variant of the well-known correspondence between pseudo-Riemannian symmetric
spaces and symmetric triples (see [4], compare [9], Section 2). If (g,8g, 〈· , ·〉g) is a hyper-Kähler symmetric triple and
(M, g) is a symmetric space with associated symmetric triple (g, θg, 〈· , ·〉g), then I = 8g(i)

∣∣
g−

and J = 8g( j)
∣∣
g−

are g+-invariant anticommuting complex structures on g−
∼= To M respecting the metric and therefore induce a hyper-

Kähler structure on M .
The only non-obvious point is the opposite direction. Let (M, g, I, J ) be a hyper-Kähler symmetric space and

let (g, θg, 〈· , ·〉g) be the associated symmetric triple. Then I, J, K := I J span a Lie algebra k ∼= sp(1) which acts
orthogonally on g−

∼= To M . This action commutes with the one of g+. We extend the k-action to g by the trivial action
on g+. For X, Y ∈ g−, Z ∈ g+, and Q ∈ k we compute

〈[Q X, Y ] + [X, QY ], Z〉 = 〈Q X, [Y, Z ]〉 + 〈X, [QY, Z ]〉

= 〈Q X, [Y, Z ]〉 + 〈X, Q[Y, Z ]〉 = 0.

It follows that k acts by derivations on g. Integrating the resulting homomorphism of sp(1) into the derivations of g
we obtain the desired homomorphism 8g : Sp(1) → Aut (g). �

Taking Proposition 2.1 into account we obtain

Corollary 2.4. The transvection group of a hyper-Kähler symmetric space is nilpotent.

We remark that solvability of the transvection group was already shown in [2].
A hyper-Kähler symmetric triple is called decomposable, if it is the orthogonal direct sum of two non-zero hyper-

Kähler symmetric triples, and indecomposable otherwise. The simply connected hyper-Kähler symmetric spaces
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which correspond to indecomposable hyper-Kähler triples are precisely those which are indecomposable in the
differential geometric sense. This follows from the de Rham–Wu decomposition theorem.

The underlying metric Lie algebra of a hyper-Kähler symmetric triple (g,8g, 〈· , ·〉g) is the tuple (g, 〈· , ·〉g). There
are analogous notions of indecomposability for symmetric triples and for metric Lie algebras.

Lemma 2.5. Let (g,8g, 〈· , ·〉g) be a hyper-Kähler symmetric triple with g non-abelian. Then the following conditions
are equivalent:

(i) (g,8g, 〈· , ·〉g) is indecomposable.
(ii) The symmetric triple (g, θg, 〈· , ·〉g) is indecomposable.

(iii) The metric Lie algebra (g, 〈· , ·〉g) is indecomposable.

Proof. The implications (iii) ⇒ (ii) ⇒ (i) are obvious. We have to prove (i) ⇒ (iii).
Assume (i). We first observe that the center z(g) is isotropic, i.e. z(g) ⊂ z(g)⊥ = g′. Indeed, any Sp(1)-invariant

complement of z(g) ∩ z(g)⊥ in z(g) is a non-degenerate abelian ideal of g. It has to be zero by assumption. Let

g =

n⊕
k=1

ik (1)

be an orthogonal decomposition of (g, 〈· , ·〉g) into non-trivial indecomposable ideals. Let j ⊂ g be a further non-
degenerate indecomposable ideal. According to [3], Theorem 3, there exists l ∈ {1, . . . , n} such that j′ = il

′.
In particular, the set of derivatives of non-degenerate indecomposable ideals is finite. Therefore the action of the
connected group Sp(1) on this set is trivial. It follows that the ideals i1

′ and (
⊕n

k=2 i′k)
⊥

= i1+z(g) are Sp(1)-invariant.
The above observation concerning the center yields z(i1) = i1

′
∩ z(g). It follows that this ideal is Sp(1)-invariant, too.

Therefore 〈· , ·〉g induces an Sp(1)-equivariant surjective map

ψ : i1 + z(g) −→ z(i1)
∗.

Note that i1
′
⊂ ker(ψ). Let s : z(i1)

∗
→ i1 + z(g) be an Sp(1)-equivariant section of ψ . Then ĩ1 := i1

′
⊕ s(z(i1)∗) is a

non-degenerate and Sp(1)-invariant ideal of g. Moreover, the projection ĩ1 → i1 with respect to (1) is an isomorphism.
Indecomposability of the triple (g,8g, 〈· , ·〉g) now implies g = ĩ1. Thus g ∼= i1 is indecomposable as a metric Lie
algebra. �

3. Quaternionic quadratic cohomology

Let us first recall the notion of quadratic cohomology introduced in [8]. Let l be a finite-dimensional Lie algebra. An
orthogonal l-module is a tuple (ρ, a, 〈· , ·〉a) (also a in abbreviated notation) such that ρ is a representation of the Lie
algebra l on the finite-dimensional real vector space a and 〈· , ·〉a is a scalar product on a such that ρ(L) ∈ so(a, 〈· , ·〉a)
for all L ∈ l.

For l and (any l-module) a we have the standard cochain complex (C∗(l, a), d), where C p(l, a) = Hom (
∧p l, a)

and we have the corresponding cocycle groups Z p(l, a) and cohomology groups H p(l, a). If a is the one-dimensional
trivial representation, then we denote this cochain complex also by C∗(l).

We have a product

〈· ∧ ·〉 : C p(l, a)× Cq(l, a) −→ C p+q(l)

defined by the composition

C p(l, a)× Cq(l, a)
∧

−→ C p+q(l, a ⊗ a)
〈· ,·〉a
−→ C p(l).

The group of quadratic 1-cochains is the group

C1
Q(l, a) = C1(l, a)⊕ C2(l)

with group operation defined by

(τ1, σ1) ∗ (τ2, σ2) =

(
τ1 + τ2, σ1 + σ2 +

1
2
〈τ1 ∧ τ2〉

)
.
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We consider now the set

Z2
Q(l, a) =

{
(α, γ ) ∈ C2(l, a)⊕ C3(l) | dα = 0, dγ =

1
2
〈α ∧ α〉

}
whose elements are called quadratic 2-cocycles. The group C1

Q(l, a) acts on Z2
Q(l, a) by

(α, γ )(τ, σ ) =

(
α + dτ, γ + dσ +

〈(
α +

1
2

dτ
)

∧ τ

〉 )
.

Ordinary quadratic cohomology is then the orbit space of this action:

H2
Q(l, a) = Z2

Q(l, a)/C
1
Q(l, a).

Now let (l,8l) be a Lie algebra with quaternionic grading and let (a,8a) be a vector space with orthogonal
quaternionic grading. We consider a as a trivial l-module. Then 8a and 8l define Sp(1)-actions on Z2

Q(l, a)

and C1
Q(l, a). More precisely, for q ∈ Sp(1) the pair of morphisms (8l(q),8a(q)−1) induces pullback maps on

C2(l, a) ⊕ C3(l) and on C1
Q(l, a) = C1(l, a) ⊕ C2(l), which leave invariant Z2

Q(l, a) and are compatible with the
C1

Q(l, a)-action on Z2
Q(l, a). We consider the sets of invariants

Z2
Q(l,8l, a) := Z2

Q(l, a)
Sp(1)

and C1
Q(l,8l, a) := C1

Q(l, a)
Sp(1)

.

The group C1
Q(l,8l, a) acts on Z2

Q(l,8l, a) and we can define the (second) quaternionic quadratic cohomology by

H2
Q(l,8l, a) := Z2

Q(l,8l, a)/C1
Q(l,8l, a).

For a Lie algebra l we denote by l1 = l, . . . , lk = [l, lk−1
], . . . the lower central series.

Definition 3.1. Let (l,8l) be a Lie algebra with a proper quaternionic grading and let a be a vector space with
orthogonal quaternionic grading. Let m be such that lm+2

= 0. Let (α, γ ) ∈ Z2
Q(l,8l, a). Then the cohomology class

[α, γ ] ∈ H2
Q(l,8l, a) is called admissible if and only if the following conditions (T ), (Ak) and (Bk) hold for all

0 ≤ k ≤ m.

(T ) a+ = α(ker[· , ·]l−
).

(Ak) Let L0 ∈ z(l) ∩ lk+1 be such that there exist elements A0 ∈ a and Z0 ∈ (lk+1)∗ satisfying
(i) α(L , L0) = 0,

(ii) γ (L , L0, ·) = −〈A0, α(L , ·)〉a + 〈Z0, [L , ·]l〉 as an element of (lk+1)∗,
for all L ∈ l, then L0 = 0.

(Bk) The subspace α(ker[· , ·]l⊗lk+1) ⊂ a is non-degenerate, where ker[· , ·]l⊗lk+1 is the kernel of the map [· , ·] :

l ⊗ lk+1
→ l.

We denote the set of all admissible cohomology classes by H2
Q(l,8l, a)]

.

The admissibility conditions are specializations of the ones in [9], Definition 5.2, to the case that l is nilpotent and
that the representation of l on a is trivial. As in [9], they do not depend on the choice of the cocycle representing the
cohomology class [α, γ ].

Now let li , ai , i = 1, 2, be Lie algebras (vector spaces, resp.) with (orthogonal) quaternionic grading. We form
l = l1 ⊕ l2, a = a1 ⊕ a2 and consider the corresponding projections pri : l → li . If (αi , γi ) ∈ Z2

Q(li ,8li , ai ), then

(pr∗1α1 ⊕ pr∗2α2, pr∗1γ1 + pr∗2γ2) ∈ Z2
Q(l,8l, a).

This operation induces a map

⊕ : H2
Q(l1,8l1 , a1)⊕H2

Q(l2,8l2 , a2) −→ H2
Q(l,8l, a).
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Definition 3.2. A cohomology class φ ∈ H2
Q(l,8l, a) is called decomposable, if there are a decomposition l = l1 ⊕ l2

into 8l-invariant ideals, a 8a-invariant orthogonal decomposition a = a1 ⊕ a2 (at least one of these decompositions
should be non-trivial), and cohomology classes φi ∈ H2

Q(li ,8li , ai ) such that φ = φ1 ⊕ φ2. Otherwise we call φ
indecomposable.

We denote the set of all indecomposable elements in H2
Q(l,8l, a)]

by H2
Q(l,8l, a)0

.

4. A construction method

Now we will present a construction method which yields hyper-Kähler symmetric triples starting with a Lie algebra
with proper quaternionic grading (l,8l), a vector space a with orthogonal quaternionic grading and an admissible
cocycle in Z2

Q(l,8l, a) (i.e. a cocycle which represents an admissible cohomology class). This construction is a
special case of the construction method for symmetric triples presented in [9], Section 4.2. In Section 6 we will see
that each hyper-Kähler symmetric triple arises by this construction in a canonical way.

Let (l,8l) be a Lie algebra with proper quaternionic grading and let (a, 〈· , ·〉a,8a) be a vector space with
orthogonal quaternionic grading. We consider the vector space

d := l∗ ⊕ a ⊕ l.

Now we choose an admissible cocycle (α, γ ) ∈ Z2
Q(l,8l, a) and define a Lie bracket [· , ·] : d × d → d by

[l∗ ⊕ a, l∗ ⊕ a] = 0 and

[L1, L2] = γ (L1, L2, ·)+ α(L1, L2)+ [L1, L2]l (2)
[L , A] = −〈A, α(L , ·)〉 (3)
[L , Z ] = ad ∗(L)(Z) (4)

for Z ∈ l∗, A ∈ a and L , L1, L2 ∈ l. Moreover we define an inner product 〈· , ·〉 and a quaternionic grading 8 on d
by

〈Z1 + A1 + L1, Z2 + A2 + L2〉 := 〈A1, A2〉a + Z1(L2)+ Z2(L1)

8(Z + A + L) := 8∗

l (Z)+8a(A)+8l(L)

for Z , Z1, Z2 ∈ l∗, A, A1, A2 ∈ a and L , L1, L2 ∈ l.

Proposition 4.1. The tuple dα,γ (l,8l, a) := (d,8, 〈· , ·〉) is a hyper-Kähler symmetric triple. It is indecomposable if
and only if [α, γ ] ∈ H2

Q(l,8l, a)]
is indecomposable.

Proof. This follows from the results of [9], especially Proposition 4.1, Lemma 5.2, and Proposition 6.2. �

Remark 4.2. If (α, γ ) ∈ Z2
Q(l,8l, a) is arbitrary, then dα,γ (l,8l, a) is still a Lie algebra with quaternionic grading

and an invariant inner product. One needs some conditions on the cocycle in order to ensure properness. For this
purpose, conditions much weaker than admissibility would suffice (e.g. (T ) together with (A0)). However, we can
detect indecomposability of dα,γ (l,8l, a) for admissible cocycles (α, γ ) only. The main reason for considering the
admissibility conditions is that any hyper-Kähler symmetric triple is isomorphic to dα,γ (l,8l, a) for an essentially
unique tuple (l,8l, a, [α, γ ] ∈ H2

Q(l,8l, a)]
), see Theorem 6.1 below.

Remark 4.3. The signature (p, q) of a hyper-Kähler symmetric triple (g,8g, 〈· , ·〉g) is defined to be the signature
of the restriction of 〈· , ·〉g to g−. Here p is the dimension of a maximal negative definite subspace of g−. Sometimes
p is called the index of the triple. The signature (the index) of a hyper-Kähler symmetric triple equals the signature
(the index) of the metric of any pseudo-Riemannian (hyper-Kähler) symmetric space which is associated with the
triple. The signature (p, q) of the above constructed hyper-Kähler symmetric triple dα,γ (l,8l, a) is determined by the
signature (pa, qa) of the restriction of 〈· , ·〉a to a− and the dimension of l−:

(p, q) = (pa + dim l−, qa + dim l−). (5)
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5. Examples of hyper-Kähler symmetric spaces with non-abelian holonomy

Now we will use the method described above to construct various hyper-Kähler symmetric triples whose associated
symmetric spaces have non-abelian holonomy. In particular, these spaces were missing in a classification result for
hyper-Kähler symmetric triples claimed by Alekseevsky and Cortés [2].

Example 1

First let us define the structure of a Lie algebra with proper quaternionic grading on the vector space l0 = H ⊕ Im H.
For all q ∈ H we denote (q, 0) only by q and (0, i), (0, j), (0, k) by I , J , and K respectively. On l0 we define a Lie
bracket [· , ·] by

I, J, K ∈ z(l0), [q1, q2] = (0, Im q̄1q2) ∈ H ⊕ Im H.

Moreover, on l0 = H ⊕ Im H we consider the Sp(1)-action 8l 0 which is the left multiplication on the first summand
and which is trivial on the second summand.

Now we will describe a suitable vector space a0 with orthogonal quaternionic grading such that H2
Q(l0,8l 0 , a0)0

is not empty. Let e1, e2, e3 be the standard basis of R3 and define A1 = e1 − e2, A2 = e2 − e3 and A3 = e3 − e1. We
consider the 2-dimensional vector space aR = span {A1, A2, A3}. Let 〈· , ·〉 be the restriction of the (positive definite)
standard scalar product on R3 to aR and let 〈· , ·〉H be the standard scalar product on H, i.e. 〈p, q〉H = Re p̄q . Then
〈· , ·〉0 := 〈· , ·〉H ⊗ 〈· , ·〉 is a scalar product on a0 := H ⊗R aR. Furthermore, if we let 8a0 be the left multiplication
on a0 we obtain a vector space with orthogonal quaternionic grading (a0, 〈· , ·〉0,8a0).

We define α0 ∈ C2(l0, a0) by

α0(q, I ) = qi A1, α0(q, J ) = q j A2, α0(q, K ) = qk A3 (6)

for all q ∈ H and by α0((l0)+, (l0)+) = α0((l0)−, (l0)−) = 0. Furthermore, we define γ0 ∈ C3(l0) by γ0(I, J, K ) = 2
and γ0((l0)−, l0, l0) = 0.

Lemma 5.1. We have (α0, γ0) ∈ Z2
Q(l0,8l0 , a0). Moreover, (α0, γ0) is admissible and indecomposable.

Proof. Obviously, α0 and γ0 are Sp(1)-invariant. Let us compute

dα0(1, i, j) = −α0([1, i], j)+ α0([1, j], i)− α0([i, j], 1)
= −α0(I, j)+ α0(J, i)+ α0(K , 1)
= j i A1 − i j A2 − k A3 = 0.

Because of the Sp(1)-invariance of α0 this implies

dα0(1, i, k) = dα0(1, j, k) = dα0(i, j, k) = 0.

Since all other components of dα0 vanish obviously, we obtain dα0 = 0.
Now we will check the condition dγ0 =

1
2 〈α0 ∧ α0〉. Obviously we have

dγ0(l0, (l0)+, (l0)+, (l0)+) = 〈α0 ∧ α0〉(l0, (l0)+, (l0)+, (l0)+) = 0

and

dγ0(l0, (l0)−, (l0)−, (l0)−) = 〈α0 ∧ α0〉(l0, (l0)−, (l0)−, (l0)−) = 0.

By Sp(1)-invariance of (α0, γ0) it remains to prove

dγ0(1, q, P, Q) =
1
2
〈α0 ∧ α0〉(1, q, P, Q)

for all imaginary q ∈ H and all P, Q ∈ {I, J, K }. We will show this for q = i . The remaining equations can be
proved similarly. We have

1
2
〈α0 ∧ α0〉(1, i, I, J ) = 〈α0(I, 1), α0(i, J )〉0 + 〈α0(i, I ), α0(1, J )〉0
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= 〈−i A1, k A2〉0 + 〈−A1, j A2〉0

= 0 = −γ0(I, I, J ) = dγ0(1, i, I, J )
1
2
〈α0 ∧ α0〉(1, i, I, K ) = 〈α0(I, 1), α0(i, K )〉0 + 〈α0(i, I ), α0(1, K )〉0

= 〈−i A1,− j A3〉0 + 〈−A1, k A3〉0

= 0 = −γ0(I, I, K ) = dγ0(1, i, I, K )
1
2
〈α0 ∧ α0〉(1, i, J, K ) = 〈α0(J, 1), α0(i, K )〉0 + 〈α0(i, J ), α0(1, K )〉0

= 〈− j A2,− j A3〉0 + 〈k A2, k A3〉0

= −2 = −γ0(I, J, K ) = dγ0(1, i, J, K ).

It is easy to see that (α0, γ0) is admissible. Indeed, Condition (T ) is satisfied because of (a0)+ = 0 and (B0) and (B1)

hold since 〈· , ·〉0 is definite. As for Conditions (A0) and (A1) we observe that z(l0)∩ l0 = z(l0)∩ l′0 = span {I, J, K }

and that for all Q ∈ span {I, J, K } there is an element L ∈ l0 such that α0(L , Q) 6= 0. Hence, (A0) and (A1) are
also satisfied, thus (α0, γ0) is admissible. Obviously, (α0, γ0) is also indecomposable since l0 is indecomposable and
α0(l0, l0) = a0. �

Corollary 5.2. The triple dα0,γ0(l0,8l 0 , a0) is an indecomposable hyper-Kähler symmetric triple of signature ( 4, 12).
The holonomy group of a symmetric space associated with this triple is non-abelian.

Proof. The first statement follows from Proposition 4.1, Lemma 5.1 and Eq. (5). It remains to prove the assertion on
the holonomy group. The Lie algebra of this group is isomorphic to d+ = (l∗0)+ ⊕ (a0)+ ⊕ (l0)+ with Lie bracket
defined by (2)–(4). Since γ (I, J, K ) 6= 0 this Lie algebra is not abelian. �

Remark 5.3. Let us briefly recall how Alekseevsky and Cortés [2] describe hyper-Kähler symmetric triples. Let
(E, ω) be a complex symplectic vector space. Any S ∈ S4 E defines a complex linear subspace hS ⊂ sp(E, ω) ∼= S2 E
by

hS = span {Sv,w ∈ S2 E | v,w ∈ E},

where Sv,w is the contraction of S with v and w defined by the symplectic form ω. If

S ∈ (S4 E)hS , (7)

then hS ⊂ sp(E, ω) is a Lie subalgebra and, moreover, there is a natural Lie bracket on hS ⊕ (H ⊗C E). If there exists
a Lagrangian subspace E+ ⊂ E such that S ∈ S4 E+ ⊂ S4 E , then S is a solution of (7). Let us call solutions of this
kind tame. If S is tame, then the Lie algebra hS is abelian.

Let J be a quaternionic structure on E such that J ∗ω = ω̄. Then J induces real structures, all denoted by τ , on
S4 E , S2 E ∼= sp(E, ω), and on H ⊗C E . If S ∈ (S4 E)τ satisfies (7), then the real Lie algebra

gS := (hS)
τ

⊕ (H ⊗C E)τ

carries a canonical structure of a hyper-Kähler symmetric triple. Moreover, Alekseevsky and Cortés proved that all
hyper-Kähler symmetric triples arise in this way. In fact, they describe explicitly how to find the polynomial S for a
given hyper-Kähler symmetric triple.

Using this description it is not difficult to show that dα0,γ0(l0,8l 0 , a0) ∼= gS for (E, ω, J, S) as follows: (E, ω) is
8-dimensional with standard symplectic basis p1, . . . , p4, q1, . . . , q4, the quaternionic structure J is characterized by
J (p1) = p2, J (pi ) = qi for i = 3, 4, and

S = p3
1q3 +

√
3p2

1 p2 p4 −
√

3p1 p2
2q4 − p3

2 p3.

Let us verify directly that S satisfies (7). Using the τ -invariance of S we find that hS = V + τ(V ), where

V = span {Sq1,q1 , Sq1,q2 , Sq1,q4 , Sq1,p3 , Sq1,p4}

= span {
√

3p1q3 + p2 p4, p1 p4 − p2q4, p1 p2, p2
1, p2

2}.
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It suffices to check that P(S) = 0 for P running through the above set of basis elements of V . Since Sp1 = Sp2 = 0
we immediately see that P(S) = 0 if P is one of the last three basis elements. It remains to compute

(
√

3p1q3 + p2 p4)(S) = 2(
√

3p1Sq3 + p2Sp4) =
1
2
(
√

3p1 p3
2 + p2(−

√
3p1 p2

2)) = 0,

(p1 p4 − p2q4)(S) = 2(p1Sp4 − p2Sq4) =
1
2
(p1(−

√
3p1 p2

2)− p2(−
√

3p2
1 p2)) = 0.

Eq. (7) follows. On the other hand, S is not tame since {v ∈ E | Sv = 0} = span {p1, p2} is only two-dimensional. This
shows that Theorem 3 in [2] claiming that all solutions of (7) are tame is not true. In particular, those results of [2,1]
which are based on this theorem have to be reconsidered. Note however, that a recent result of Cortés ([5], Theorem 10;
compare also [6]) says that all hyper-Kähler symmetric triples with abelian g+ are given by tame solutions of (7). Up
to now, there is no general method to find all solutions of (7). It is not even clear how to find the special solution
desribed above without knowing the symmetric triple in advance.

Example 2

We look at H2 as an abelian Lie algebra equipped with the quaternionic grading given by the left H-module
structure. We equip Im H ⊕ Im H with the trivial Sp(1)-action. Let A : Im H → Im H be a real linear traceless and
bijective map which is symmetric with respect to the standard scalar product 〈· , ·〉H|ImH. Then we define an inner
product on Im H ⊕ Im H by

〈(P1, P2), (Q1, Q2)〉 := 〈P1, AQ2〉H + 〈Q1, AP2〉H

and denote the resulting vector space with orthogonal quaternionic grading by aA. We define α+ ∈ C2(H2, aA)
Sp(1)

by

α+((p, q), (r, s)) := (Im( p̄s + q̄r), Im(q̄s)).

We claim that

(α+, 0) ∈ Z2
Q(H

2,8H2 , aA). (8)

We have to check that 〈α+ ∧ α+〉 = 0. We decompose
∧4 H2

=
⊕

k+l=4
∧k,l , where

∧k,l
=

∧k H ⊗
∧l H. First

we observe that 〈α+ ∧ α+〉 vanishes on
∧k,l for (k, l) 6= (1, 3). Next we compute

1
2
〈α+ ∧ α+〉((1, 0), (0, i), (0, j), (0, k)) = 〈i, A(−i)〉H + 〈k, A(−k)〉H + 〈− j, A( j)〉H

= −tr A = 0,

and for p, q ∈ Im H ⊂ H

1
2
〈α+ ∧ α+〉((1, 0), (0, p), (0, q), (0, 1)) = 〈p, A(−q)〉H + 〈−q, A(−p)〉H = 0.

Sp(1)-invariance implies that 〈α+ ∧ α+〉 vanishes on
∧1,3 as well. This proves (8).

Let l0, a0, α0, γ0 be as in Example 1. Fix n ∈ N and choose a vector A = (A1, . . . , An) of traceless symmetric
bijective maps Ak : Im H → Im H. We equip

l := l0 ⊕ Hn, aA := a0 ⊕

n⊕
k=1

aAk

with their natural quaternionic gradings. Then we have natural projections

ϕ0 : l −→ l0

and for k = 1, . . . , n

ϕk : l −→ H2, ϕk(p, P, p1, . . . , pn) := (p, pk).
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We define

α := ϕ∗

0α0 ⊕

n⊕
k=1

ϕ∗

kα+ ∈ C2(l, aA)
Sp(1), γ := ϕ∗

0γ0 ∈ C3(l).

Combining (8) with Lemma 5.1 we see that (α, γ ) ∈ Z2
Q(l,8l, aA).

Lemma 5.4. The cocycle (α, γ ) ∈ Z2
Q(l,8l, aA) is admissible and indecomposable.

Proof. A straightforward verification shows that (α, γ ) satisfies the admissibility conditions of Definition 3.1. In
particular, α enjoys the following properties

(a) α(
∧2 l) = a,

(b) For all L ∈ l \ {0} there exists L ′
∈ l such that α(L , L ′) 6= 0.

Now we use Properties (a) and (b) in order to show indecomposability of (α, γ ). Assume that we have decompositions

l = l1 ⊕ l2, a = a1 ⊕ a2, α = pr∗1α1 ⊕ pr∗2α2,

for certain αi ∈ C2(li , ai )
Sp(1). We may assume that l1 is non-abelian. Then Sp(1)-invariance of l1 implies that

l+ = (l0)+ = (l1)+. This forces (l2)+ = [(l2)−, (l2)−] = 0, which in turn implies l2 ⊂ Hn . It follows that
a2 = α(

∧2 l2) is isotropic, hence a2 = {0}, α2 = 0. Therefore α = pr∗1α1. Now (b) implies that l2 = {0}. It
follows that (α, γ ) is indecomposable. �

As in Example 1 we obtain

Corollary 5.5. dα,γ (l,8l, aA) is an indecomposable hyper-Kähler symmetric triple of signature (4n + 4, 4n + 12).
The holonomy group of a symmetric space associated with this triple is non-abelian.

Example 3

Let (l,8l) be a Lie algebra with proper quaternionic grading. Then we can form the cotangent Lie algebra
T ∗l := l n l∗ which possesses a quaternionic grading T ∗8l and an invariant metric 〈· , ·〉T ∗l (given by the dual
pairing) in a natural way. This construction could be viewed as a special case of the one presented in Section 4 —
apart from the fact that the involved cocycle (0, 0) is not admissible. If we require in addition that

z(l) ⊂ l−, (9)

then (T ∗l, T ∗8l, 〈· , ·〉T ∗l) is a hyper-Kähler symmetric triple.
If (g,8g, 〈· , ·〉g) is a hyper-Kähler symmetric triple, then g satisfies (9), and the cotangent hyper-Kähler symmetric

triple (T ∗g, T ∗8g, 〈· , ·〉T ∗g) is isomorphic to the tangent triple (T g, T8g, 〈· , ·〉Tg), where

T g := g n g, 〈(X1, Y1), (X2, Y2)〉Tg := 〈X1, Y2〉g + 〈X2, Y1〉g.

Proposition 5.6. (a) Let (l,8l) be a non-abelian Lie algebra with proper quaternionic grading satisfying (9). If
(l,8l) is indecomposable as a Lie algebra with quaternionic grading, then the hyper-Kähler symmetric triple
(T ∗l, T ∗8l, 〈· , ·〉T ∗l) is indecomposable.

(b) Let (g,8g, 〈· , ·〉g) be an indecomposable hyper-Kähler symmetric triple with g non-abelian. Then the hyper-
Kähler symmetric triple (T g, T8g, 〈· , ·〉Tg) is indecomposable as well.

Proof. Let (g,8g, 〈· , ·〉g) be an indecomposable hyper-Kähler symmetric triple with g non-abelian. By Lemma 2.5
the tuple (g, 〈· , ·〉g) is indecomposable as a metric Lie algebra. Then, according to [3], Theorem 5, the metric Lie
algebra (T g, 〈· , ·〉Tg) is indecomposable as well. This implies (b).

Now let (l,8l) be as in (a). We consider the Lie algebra sp(1)n l, where sp(1) acts on l by the differential of 8l.
We let sp(1)n l act on T ∗l by (Q, L)v := d(T ∗8l)(Q)v + [L , v], Q ∈ sp(1), L ∈ l, v ∈ T ∗l. Then T ∗l = l ⊕ l∗ is a
decomposition into indecomposable sp(1)nl-submodules. Let us assume that there is a non-trivial decomposition into
hyper-Kähler symmetric triples T ∗l = h1 ⊕ h2. In particular, h1 and h2 are sp(1)n l-submodules. The Krull-Schmidt
Theorem (see e.g. [7], p. 115) implies that one of these modules, say h1, is isomorphic to l. Pulling back the invariant
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bilinear form 〈· , ·〉T ∗l|h1 from h1 to l we obtain an inner product 〈· , ·〉l such that (l,8l, 〈· , ·〉l) is an indecomposable
hyper-Kähler symmetric triple. Now we apply (b) to this triple which yields a contradiction to the assumption that
T ∗l ∼= T l is decomposable as a hyper-Kähler symmetric triple. This finishes the proof of (a). �

If the symbol d stands for a hyper-Kähler symmetric triple, then we simply write T d or T 1d for its tangential triple.
We form higher tangential triples by T nd := T (T n−1d), n ≥ 2.

Corollary 5.7. Let d be one of the hyper-Kähler symmetric triples constructed in Examples 1 and 2 of signature
(4k, 4k + 8), k ≥ 1. Then T nd, n ≥ 1, is an indecomposable hyper-Kähler symmetric triple of neutral signature
(2n+2(k + 1), 2n+2(k + 1)). The holonomy group of a symmetric space associated with T nd is non-abelian.

Remark 5.8. If d = dα,γ (l,8l, a) for some admissible cocycle (α, γ ) ∈ Z2
Q(l,8l, a) (as e.g. in Corollary 5.7), then

T d ∼= dTα,T γ (T l, T8l, T a), where

Tα
(
(L1, L ′

1), (L2, L ′

2)
)

=
(
α(L1, L2), α(L1, L ′

2)+ α(L ′

1, L2)
)
,

T γ
(
(L1, L ′

1), (L2, L ′

2), (L3, L ′

3)
)

= γ (L1, L2, L ′

3)+ γ (L1, L ′

2, L3)+ γ (L ′

1, L2, L3).

Moreover, one can show that the cocycle (Tα, T γ ) is admissible again. This last assertion is not true for the general
symmetric triples dα,γ (l, θl, a) constructed in [9] from admissible cocycles (α, γ ) ∈ Z2

Q(l, θl, a), only for those with
nilpotent l and a trivial l-module a.

6. A classification scheme

Let (l,8l) be a Lie algebra with proper quaternionic grading and let (a, 〈· , ·〉a,8a) be a vector space with
orthogonal quaternionic grading. We consider their automorphism groups Aut (l,8l), and Aut (a, 〈· , ·〉a,8a) and
form

Gl,8l,a := Aut (l,8l)× Aut (a, 〈· , ·〉a,8a).

There is a natural right action of Gl,8l,a on H2
Q(l,8l, a) which leaves H2

Q(l,8l, a)0
invariant.

Theorem 6.1. There is a bijective map from the set of isomorphism classes of indecomposable hyper-Kähler
symmetric triples to the union of orbit spaces∐

(l,8l)

∐
(a,〈· ,·〉a,8a)

H2
Q(l,8l, a)0/Gl,8l,a,

where the union is taken over all isomorphism classes of Lie algebras (l,8l) with proper quaternionic grading and
all isomorphism classes of vector spaces (a, 〈· , ·〉a,8a) with orthogonal quaternionic grading.

The inverse of this map sends the orbit of [α, γ ] ∈ H2
Q(l,8l, a)0

to the isomorphism class of dα,γ (l,8l, a).

Proof. The theorem is the hyper-Kähler analog of our classification scheme of symmetric triples [9], Theorem 6.1.
The proof of the latter is contained in [9], Sections 4–6. It carries over to the present situation, one has to take care of
the quaternionic gradings, only. For the convenience of the reader we describe the map which associates a cohomology
class to a given hyper-Kähler symmetric triple (g,8g, 〈· , ·〉g).

By Corollary 2.4 the Lie algebra g is nilpotent. We look at its lower central series and form the isotropic ideal

i :=

∞∑
k=2

gk
∩ (gk)⊥. (10)

Then l := g/i⊥ and a := i⊥/i inherit the desired structures from g. Moreover, the nilpotency of g implies that the
induced l-action on a is trivial. We choose an Sp(1)-equivariant section s : l → g with isotropic image and set

α(L1, L2) := [s(L1), s(L2)]g − s([L1, L2]l) mod i

γ (L1, L2, L3) := 〈 [s(L1), s(L2)]g, s(L3)〉g.
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Then (α, γ ) is an admissible cocycle in Z2
Q(l,8l, a). It is indecomposable if (g,8g, 〈· , ·〉g) is so. The desired

cohomology class is given by [α, γ ] ∈ H2
Q(l,8l, a)0

. �

Remark 6.2. For [α, γ ] ∈ H2
Q(l,8l, a)0

a hyper-Kähler symmetric space associated with dα,γ (l,8l, a) has abelian
holonomy if and only if l is abelian. Indeed, if l is abelian, then l = l−, since l is proper and the assertion follows from
Eqs. (2)–(4). To show the converse, recall from Remark 5.3 that Cortés [5] showed that every hyper-Kähler symmetric
triple (g,8, 〈· , ·〉) with abelian g+ arises from a tame solution of (7). Now using (10) it is easy to see that l = g/i⊥ is
abelian.

7. Classification in the case of signature (4, 4n)

Our general classification scheme can be used to find explicit classification results (i.e. lists), if we only consider
hyper-Kähler symmetric spaces of a given small index. Here we will classify indecomposable hyper-Kähler symmetric
spaces of index 4. We want to apply Theorem 6.1. So we have to decide for which (l,8l) there is a vector space with
orthogonal quaternionic grading a and an element [α, γ ] ∈ H2

Q(l,8l, a)0
such that dα,γ (l,8l, a) has index 4.

Proposition 7.1. Let (l,8l) be a Lie algebra with proper quaternionic grading, let a be a vector space with
orthogonal quaternionic grading and suppose [α, γ ] ∈ H2

Q(l,8l, a)0
. If dα,γ (l,8l, a) is a hyper-Kähler symmetric

triple of index 4, then l = 0 or (l,8l) is isomorphic either to (l0,8l 0) (as defined in Section 5) or to (H,8H), where
8H is the left multiplication on H.

Proof. From (5) we know that dim l− ∈ {0, 4}. If dim l− = 0, then l = 0. Suppose now that dim l− = 4, i.e. l− ∼= H.
Consider now the map ad L|l− for an arbitrary L ∈ l+. This map commutes with the Sp(1)-action, i.e. it is H-linear.
On the other hand it must be nilpotent, since l is nilpotent by Proposition 2.1. Hence the map is zero, and it follows
that [l−, l+] = 0. This gives [l+, l+] = [[l−, l−], l+] = 0. In particular, we have l′ = l+ ⊂ z(l).

Since Sp(1) acts by automorphisms we have

[1, i] = −[ j, k], [1, j] = [i, k], [1, k] = −[i, j].

In particular we get dim l′ ≤ 3. If dim l′ = 0, then l ∼= H, if dim l′ = 3, then l ∼= l0. Assume dim l′ = 1. By an easy
direct computation or using [8], Proposition 6.2 one obtains H2

Q(l,8l, a)]
= ∅, a contradiction.

It remains to exclude the case dim l′ = 2. If dim l′ = 2, then we may assume

[1, i] = −[ j, k] =: X, [1, j] = [i, k] =: Y, [1, k] = −[i, j] = 0.

Then dα = 0 implies α(X, Y ) = 0 and 0 = dα(1, i, j) = α([1, i], j) + α([ j, 1], i), thus α(X, j) = α(Y, i) =: A.
This together with the Sp(1)-invariance of α implies a− = α(l−, l+) = span {A, i A, j A, k A}. But dγ (i, j, X, Y ) = 0
now implies

0 = 〈α( j, X), α(i, Y )〉 + 〈α(X, i), α( j, Y )〉 = 2〈A, A〉.

Hence A is isotropic. Since a− is non-degenerate it follows that A = 0, thus α(l−, l+) = 0. In particular, α(X, l) = 0.
Hence α satisfies Condition (i) of (A1) for L0 = X . Let us show that Condition (ii) is also satisfied. Because of
the Sp(1)-invariance of γ we have γ (l+, l+, l−) = 0. Since, moreover, dim l+ = 2 we obtain γ (l+, l+, l) = 0. In
particular, γ (L , X, ·) = 0 ∈ (l′)∗ for all L ∈ l. Hence (ii) is satisfied for A0 = 0 and Z0 = 0. Now (A1) implies
X = 0, a contradiction. �

Next we have to determine H2
Q(l,8l, a)0

/Gl,8l,a for all (l,8l) which appear in Proposition 7.1 and for all
(suitable) a. The case l = 0 is trivial. Thus let us start with (l,8l) = (H,8H). For a fixed orthonormal basis
A1, A2 of a = a+ = R1,1 we define α′

∈ Z2(H, a)Sp(1) by

α′(1, i) = A1, α′(1, j) = A2, α′(1, k) = 0.

Furthermore, for a fixed orthonormal basis A1, A2, A3 of a = a+ = R1,2 and each real number 0 < r ≤ π/4 we
define αr ∈ Z2(H, a)Sp(1) by

αr (1, i) = A1, αr (1, j) = sin r · A2, αr (1, k) = cos r · A3.
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Analogously, for a fixed orthonormal basis A1, A2, A3 of a = a+ = R2,1 and each real number 0 < s ≤ π/4 we
define αs ∈ Z2(H, a)Sp(1) by

αs(1, i) = sin s · A1, αs(1, j) = cos s · A2, αs(1, k) = A3.

Then it is easy to verify that 〈α′
∧ α′

〉 = 0, 〈αr ∧ αr 〉 = 0, and 〈αs ∧ αs〉 = 0 holds, e.g.

〈αr ∧ αr 〉(1, i, j, k) = 〈αr (1, i), αr ( j, k)〉 + 〈αr ( j, 1), αr (i, k)〉 + 〈αr (i, j), αr (1, k)〉

= 〈A1,−A1〉 + 〈− sin r · A2, sin r · A2〉 + 〈− cos r · A3, cos r · A3〉

= 1 − sin2 r − cos2 r = 0.

Proposition 7.2. We equip the spaces R1,1, R1,2 and R2,1 with the trivial Sp(1)-action. Then we have

H2
Q(H,8H,R

1,1)0/GH,8H,R1,1 = {[α′, 0]}

H2
Q(H,8H,R

1,2)0/GH,8H,R1,2 = {[αr , 0] | 0 < r ≤ π/4}

H2
Q(H,8H,R

2,1)0/GH,8H,R2,1 = {[αs, 0] | 0 < s ≤ π/4}.

If a is a vector space with orthogonal quaternionic grading which is not isomorphic to R1,1, R1,2 or R2,1 with the
trivial Sp(1)-action, then H2

Q(H,8H, a)0 is empty.

Proof. Let a be a vector space with orthogonal quaternionic grading. Since C3(H)Sp(1) vanishes and H2(H, a) =

C2(H, a) we have

H2
Q(H,8H, a) = {[α, 0] | α ∈ C2(H, a)Sp(1), 〈α ∧ α〉 = 0}.

Each element α ∈ C2(H, a)Sp(1) is given by the values

α(1, i) = A′

1, α(1, j) = A′

2, α(1, k) = A′

3, A′

i ∈ a+, (11)

and 〈α ∧ α〉 = 0 holds if and only if 〈A′

1, A′

1〉 + 〈A′

2, A′

2〉 + 〈A′

3, A′

3〉 = 0. Moreover, [α, 0] is indecomposable if and
only if a = a+ = span {A′

1, A′

2, A′

3}. For admissibility we have to check only (A0) and (B0). For an indecomposable
cohomology class [α, 0] these conditions are satisfied if and only if α 6= 0. In particular, if H2

Q(H,8H, a)0 is not
empty, then a = a+ is isomorphic to R1,1, R1,2 or R2,1. Now we study the action of GH,8H,a onH2

Q(H,8H, a)0. We
have Aut (H,8H) ∼= H∗, where an element q ∈ H∗ acts by right multiplication (denoted by Rq ) on H. Take q ∈ H∗.
Then q = rq0 with r ∈ R, r > 0 and q0 ∈ Sp(1). Take α as in (11) and set

R∗
qα(1, i) = Ā1, R∗

qα(1, j) = Ā2, R∗
qα(1, k) = Ā3.

Let λ : Sp(1) → SO(3) be the double covering. Then we have

( Ā1, Ā2, Ā3) = r2(A′

1, A′

2, A′

3) · λ(q̄0).

Hence, replacing α by an element in the same GH,8H,a-orbit we may assume that A′

1, A′

2, A′

3 are pairwise orthogonal
and that

〈A′

1, A′

1〉 = −1, 〈A′

2, A′

2〉 = 1, A′

3 = 0

or

〈A′

1, A′

1〉 = −1, 〈A′

2, A′

2〉 = t, 〈A′

3, A′

3〉 = 1 − t, 0 < t ≤ 1/2

or

〈A′

1, A′

1〉 = −t, 〈A′

2, A′

2〉 = t − 1, 〈A′

3, A′

3〉 = 1, 0 < t ≤ 1/2,

which immediately implies the assertion. �

Now let us consider (l0,8l0). Let a0 and [α0, γ0] ∈ H2
Q(l0,8l 0 , a0)0 be as defined in Section 5.
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Proposition 7.3. The orbit space H2
Q(l0,8l 0 , a0)0/Gl0,8l 0 ,8a0

contains exactly one element (represented by
[α0, γ0]). If a is a vector space with orthogonal quaternionic grading which is not isomorphic to a0 or to a−

0 :=

(a0,−〈· , ·〉0,8a0), then H2
Q(l0,8l 0 , a)0 is empty.

Proof. Let a be a vector space with orthogonal quaternionic grading. It is easy to verify that for

Z2
l 0

:=

{
α ∈ C2(l0, a)

Sp(1)
∣∣∣∣ iα(1, I )+ jα(1, J )+ kα(1, K ) = 0
α((l0)+, (l0)+) = α((l0)−, (l0)−) = 0

}
the map

Z2
l 0

−→ H2(l0, a)
Sp(1), α 7−→ [α]

is correctly defined (similar computation as in the proof of Lemma 5.1) and an isomorphism. Now assume that
H2

Q(l0,8l 0 , a)0 is not empty and take [α, γ ] ∈ H2
Q(l0,8l 0 , a)0. We may assume that α ∈ Z2

l 0
. We set

A1 := −α(i, I ), A2 := −α( j, J ), A3 = −α(k, K )

and γ (I, J, K ) = 2c. Since (α, γ ) is indecomposable we have

a = a− = H ⊗R span {A1, A2, A3}.

By the same computation as in the proof of Lemma 5.1 the equation

1
2
〈α ∧ α〉(1, q, P, Q) = dγ (1, q, P, Q)

for all q ∈ H, P, Q ∈ {I, J, K } yields

〈q1 A1, q2 A2〉a = 〈q1 A1, q2 A3〉a = 〈q1 A2, q2 A3〉a = −
1
2
〈q1, q2〉H · γ (I, J, K ) = −c〈q1, q2〉H.

This implies

0 = 〈p(A1 + A2 + A3), q Ai 〉 = 〈p Ai , q Ai 〉a − 2c〈p, q〉H,

thus 〈p Ai , q Ai 〉a = 2c〈p, q〉H for i = 1, 2, 3, p, q ∈ H. Assume c = 0. Then α = 0 and γ ((l0)+, (l0)+, l0) = 0.
Then it follows in the same way as in the proof of Proposition 7.1, that [α, γ ] is not admissible. Hence c 6= 0. If c > 0,
then by the above equations a is isomorphic to a0 as a vector space with orthogonal quaternionic grading and if c < 0,
then a is isomorphic to a−

0 .
Hence we may assume that a = a0, α = |c|1/2α0, or a = a−

0 , α = |c|1/2α0. Let us now show that
[α, γ ] = [α, γ̃ ] ∈ H2

Q(l,8l, a)0
with γ̃ (I, J, K ) = 2c and γ̃ ((l0)−, (l0), (l0)) = 0. We consider the subspaces

{〈α ∧ τ 〉 ∈ C3(l0)
Sp(1)

| τ ∈ Z1(l0, a)
Sp(1)

} ⊂ {γ ′
∈ Z3(l0)

Sp(1)
| γ ′(I, J, K ) = 0}

of C3(l0)
Sp(1). By definition of H2

Q(l,8l, a) it suffices to show that both subspaces are equal. Note that the latter of
these spaces is 8-dimensional. Since Z1(l0, a)

Sp(1) is also 8-dimensional it remains to prove that the map

Z1(l0, a)
Sp(1)

3 τ 7−→ 〈α ∧ τ 〉 ∈ C3(l0)
Sp(1)

is injective. Assume that τ is in the kernel of this map. Then we have

0 = 〈α ∧ τ 〉(1, q, Q) = 〈α(q, Q), τ (1)〉 − 〈α(1, Q), τ (q)〉 = 2〈α(q, Q), τ (1)〉

for all q ∈ Im H and all Q ∈ {I, J, K }. Since

a = span {α(q, Q) | q ∈ Im H, Q ∈ {I, J, K }}

this implies τ(1) = 0, hence τ = 0.
Hence we may assume that a = a0, α = |c|1/2α0, and γ = |c|γ0 or a = a−

0 , α = |c|1/2α0, and γ = −|c|γ0.
If we now take S = |c|−1/3Id ⊕ |c|−1/6Id : (l0)+ ⊕ (l0)− → (l0)+ ⊕ (l0)−, then S ∈ Aut (l0,8l 0) and we get
(S∗α, S∗γ ) = (α0,±γ0). �
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As a consequence of Theorem 6.1, Eq. (5) and Propositions 7.1–7.3 we obtain the following classification.

Theorem 7.4. If (g,8g, 〈· , ·〉g) is a hyper-Kähler symmetric triple which is associated with an indecomposable
hyper-Kähler symmetric space of index 4, then it is isomorphic to (H,8H,−〈· , ·〉H) or to dα,γ (l,8l, a) for exactly
one of the data in the following table:

(l,8l) a α γ Parameters

(H,8H) a = a+ = R1,1 α′ 0 –
a = a+ = R1,2 αr 0 0 < r ≤ π/4
a = a+ = R2,1 αs 0 0 < s ≤ π/4

(l0,8l 0 ) a0 α0 γ0 –
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